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Fluctuation-entanglement mechanism for director anchoring at nematic polymer surfaces
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The existence of polymeric entanglements in a polymer nematic liquid crystal modifies the Frank elastic
description governing director deformation. We present a calculation of the director fluctuation contribution to
polymer nematic surface tension, in which we supplement the usual Frank terms with a damping term due to
entanglements. We infer an effective surface anchoring potential, going to zero asn ln n in the limit of low
entanglement densityn. The anchoring easy axis depends on the relative magnitudes of the Frank constants
governing director elasticity. We comment on generalizing the approach to take into account polydomain
structure.
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I. INTRODUCTION

The details of the boundary conditions on the directorns
at a nematic surface, the so-called ‘‘anchoring’’ conditio
are of considerable importance in liquid crystal applicatio
@1#. They are often adequately represented by the Rap
Papoular potential

W~12uns•neu2!, ~1!

describing preferential orientation ofns along an ‘‘easy
axis’’ ne , according to a positive anchoring strengthW. Sev-
eral microscopic approaches exist which givens andW ex-
plicitly within the framework of the Maier-Saupe and O
sager theories of nematic ordering@2#. These involve mean
field approximation and need to be qualified by their negl
of fluctuationsdns , which might be important since the
occur in a quasi-two-dimensional space for which mean-fi
theory is vulnerable@3#. However, for models pertaining t
the traditional low-molecular-weight thermotropic nematic
dns fluctuations appear to manifest themselves as w
behaved corrections to the mean-field predictions, w
within the range of validity of simple Ginzburg criteria@3,4#.

The statistical mechanical procedure for calculating s
corrections generally involves expanding in a harmonic
proximation about some ‘‘bare’’ anchoring potential, whic
one can identify with the mean-field result. For low
molecular-weight nematics, all fluctuation-induced anch
ing effects disappear in the limit in which the bare poten
goes to zero. In this paper we present a departure from
state of affairs. We argue that in the general case ofpolymer
nematics there remains, by contrast, a residual surface
choring potential which is entirely due to fluctuations.

The effect is engendered by introducing a bulk anchor
term into the fluctuation Hamiltonian. In the next section w
discuss how, physically, this term expresses coupling
tween director fluctuations and an entanglement matrix. S
tion III calculates the associated contribution to surface t
sion. In Sec. IV, we interpret the anisotropy of the surfa
tension according to the Rapini-Papoular scheme. Sectio
discusses modifications to the calculation due to the poly
main characteristics of polymer nematics.
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II. DIRECTOR FLUCTUATIONS IN POLYMER
NEMATICS

Consider a main-chain polymer liquid crystal in which th
persistence lengthP of the chains is much smaller than the
lengthL. The isotropic phase conforms to the standard b
polymer scenario, in which each molecule is a spherical c
and there is a degree of entanglement between the c
With the onset of nematic ordering, however, the sphere
comes elongated~see Fig. 1!. The entanglements accommo
date this new equilibrium structure by relaxing and refor
ing in lower stress configurations. Once mechani
equilibrium is established, it is clear that any attempt to
homogeneously deform the director will be accompanied
a short-time stress coupling to the entanglements.

This is similar to the physical picture presented
Warner and Terentjev@5# in their discussion of the hydro
static coupling between cross-links and Frank elasticity
nematic elastomers. We now make the ansatz that in poly
nematics, thermal director fluctuationsdn(r ) over the space
r of the system take place on time scales shorter than
characteristic reptation times associated with the entan
ments, such that we can adopt the hydrostatics of a nem
elastomer wholesale. That is, we assume that a fluctua
interacts with an entanglement in the same way as it wo
with a permanent cross-link. The fluctuation Hamiltoni
then includes, in addition to the usual Frank terms, a te

FIG. 1. Schematic conformation of two entangled molecules
the bulk of a main-chain polymer liquid crystal in the isotropic a
nematic phases, respectively.
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;dn2 expressing local anchoring to the entanglement m
trix:

H5 1
2E dr$K1~div dn!21K2~n•curldn!2

1K3~n3curldn!21Ddn2%. ~2!

Note that this choice of Hamiltonian remains phenome
logically relevant asP/L increases from the limitP!L,
since the polymeric ‘‘shape’’ continues to mold itself arou
nematic order in the system and, as stressed in@5#, it is this
basic facility which underpins the term inD. Clearly, how-
ever, the argument no longer applies beyondP;L, when the
chains are fully extended

In the case of side-chain polymer nematics, it is the ba
bone order~i.e., the degree of elongation of the spher!,
rather than the side-chain mesogens, which couples to
tanglements. Since the backbone is flexible, we may surm
that there is always entanglement coupling, independentl
the rigidity of the mesogens.

III. SURFACE TENSION

To derive surface tension fromH, we consider the parti-
tion function for a systemh, consisting of a polymer nemati
confined between two flat parallel surfaces atz50 and z
5h in Cartesian coordinatesr5(x,y,z),

Zh5E d@dn~r !#exp~2Hh /kBT!. ~3!

The surface tensiong per unit areaA of the surfaces is the
nonbulk part of the Helmholtz free energyFh52kBT ln Zh
in the limit h→`, i.e.,

g5 lim
h→`

]Fh /]A. ~4!

Our strategy in the following will be, rather than calcula
ing Z` directly, to calculateFh for arbitraryh, and then take
h→`. The advantage of this approach is that it allows us
exploit a mathematically useful analogy with the 1D qua
tum oscillator, pointed out by Ajdariet al. @6# in their calcu-
lation of the pseudo-Casimir interaction between wa
bounding ordinary nematics.

Let us consider first the case of fluctuations about a u
form ground state in which the director is everywhere p
pendicular (') to the surfaces, following closely the analys
of @6#. We expanddn(r ).„dnx(r ),dny(r ),1… in Fourier
components over surface areaA, separating longitudinal (l )
and transverse (t) modes:

dn~r !5
1

A (
q

@ ñl~q,z!1ñt~q,z!#exp~ iq•R!,

whereR5(x,y) and the wave vectorsq lie parallel to the
surfaces.
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The l andt modes can be treated separately. We focus
the l modes, defining for notational conveniencef(q,z)
5ñl(q,z).

Eachl mode contributes a partition function factor

Zh,q5E d@f~q,z!#exp~2Hh,q /kBT!, ~5!

where, using Eq.~2!, the Hamiltonian for the mode is

Hh,q5 1
2E

0

h

dz@~D1K1q2!f21K3~]zf!2#. ~6!

Equation~5! may be cast in the form

Zh,q5E df0df1Gh~f1 ,f0!, ~7!

with

Gh~f1 ,f0!5E
f(0)5f0

f(h)5f1
d@f~z!#expH 2~2kBT!21

3E
0

h

dz@~D1K1q2!f21K3~]zf!2#J . ~8!

The kernelGh satisfies

]

]h
Gh~f,f0!5

1

2 F S kBT

K3
D ]2

]f2
2S D1K1q2

kBT Df2GGh~f,f0!,

~9!

with the initial condition

G0~f,f0!5d~f2f0!. ~10!

The solution forGh is well known in the context of the
1D quantum oscillator,

Gh~f,f0!5 (
p50

`

e2vq(p11/2)hcp~f!c* ~f0!, ~11!

with eigenfunctions

cp~f!5
1

A2pp!
S bq

p D 1/4

e2bqf2/2Hp~Abqf!. ~12!

HereHp is thepth Hermite polynomial, and we have define

vq5AS D1K1q2

K3
D , bq5~KBT!21AK3~D1K1q2!.

~13!

Substituting Eq.~11! into Eq. ~7!, and performing the in-
tegration, Ajdariet al. obtain

Zh,q5F bq

4p S 12e22vqh

e2vqh D G21/2

. ~14!
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This gives the total Helmholtz free energy according
Fh52kBT(q ln Zh,q :

Fh5
kBT

2 (
q

@hvq1 ln~12e22vqh!1 ln~bq/4p!#.

~15!

To obtain the surface tension, we take the derivative w
respect to surface areaA. Only the third term contributes to
the h→` limit, i.e.,

g5 lim
h→`

]Fs /]A5
kBT

2
]/]A(

q
ln~bq/4p!, ~16!

where we identify as the surface excess part ofFh ,

Fs5
kBT

2 (
q

@ ln~12e22vqh!1 ln~bq/4p!#. ~17!

IV. SURFACE ANCHORING

Adding to the above the contribution due to transve
fluctuations, we calculate in the thermodynamic limitA
→`,

g~' !5kBT~2p!22Eqc
dqEp/2

qdfS D

K1q21D

1
D

K2q21D
D 2

kBT

2p
qc

2

5
kBT

16p H ln~j1
2qc

211!

j1
2

1
ln~j2

2qc
211!

j2
2 J 2

kBT

2p
qc

2 ,

~18!

whereqc is a high-wave number cutoff, and we defineja

5AKa /D with dimensions of length.
Repeating the analysis for the case of a uniform grou

state in which the director is everywhereparallel (i) to the
surface, we arrive at

g~ i !5kBT~2p!22Eqc
dqEp/2

qdf

3S D

~K1 sin2f1K3 cos2f!q21D

1
D

~K2 sin2f1K3 cos2f!q21D
D 2

kBT

2p
qc

2 .

~19!

Equations~18! and~19! establish a basic anchoring pote
tial of the Rapini-Papoular type, with anchoring strength

W5ug~ i !2g~' !u, ~20!
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and an easy axisne which is either planar or perpendicula
according to the relative magnitudes of the Frank consta
K1 , K2, andK3.

By way of illustration, consider the example o
‘‘Onsager-like’’ anisotropyK15K25K, K35K1DK @7#.
Then

g~' !5
kBT

8p S ln@j2qc
211#

j2 D 2
kBT

2p
qc

2 ~21!

and, to lowest order inDK5K32K,

g~ i !.
kBT

8p S ln@~j8qc!
211#

j82 D 2
kBT

2p
qc

2 , ~22!

wherej85A(K1DK/2)/D.
The difference between the two constitutes aplanar an-

choring potential, of strength

W5g~' !2g~ i !.
kBT

16p
qc

2S DK

K Dw@jqc#. ~23!

Figure 2 shows the dimensionless quantityw@jqc# near
the strong entanglement limit in whichj approaches the cut
off length qc

21 .
In the weak-entanglement limit (D→0, j→`), W goes

to zero as

W5
kBT ln jqc

2pj2 S DK

K D ~j→`!. ~24!

An interpretation of this expression at the microscop
level is revealing. We writeqc;d21, K;kBT/d, with d an
effective mesogen dimension, and, following@5#, D
;nkBT, wheren is the entanglement density. Hence,j22

5D/K;nd and

W/d

nkBT
; ln~nd3!, ~25!

FIG. 2. The reduced planar anchoring potential of Eq.~23!,
w@jqc#54 ln(11j2qc

2)/(jqc)
224(11j2qc

2)21.
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which relates the anchoring free energy to the distributio
entropy of entanglements over the mesogen ‘‘lattice.’’

V. POLYDOMAIN CORRECTIONS

Experimentally, polymer nematics exhibit a polydoma
structure. To take this into account, let us assume that t
exists a well-defined length scalez characterizing domain
size. More specifically, we will interpretz as a length scale
over which director-director correlations persist. This is to
distinguished from the alternative@8# in which z is under-
stood as an average separation between topological de
of sheetlike character~which would also have anchorin
properties!.

Two modifications to the surface tension calculation s
gest themselves:~i! In the summations overq, Eqs.~18! and
~19!, we implement an effective low-wave-number cuto
;z21, replacing the thermodynamic limit.~ii ! We seth5z
in Eq. ~16!, rather thanh→`, and absorb into our definition
of surface tension the resulting excess free energy due to
quasi-Casimir effect, the second term on the right in the d
nition of Fs , Eq. ~17!.

With these modifications, the fluctuation part of the s
face tension splits into two parts, i.e.,g5g`2gz , with gz

the finite-domain correction. For the case of the we
Onsager-like elastic anisotropy invoked above~i.e., K5K1
5K2 , K35K1DK), the leading order corrections to th
planar anchoring potential of Eq.~23! are

Wz5g̃z~ i !2g̃z~' !.2
kBT

4pzj S DK

K D ~j!z!

.2
3kBT

8pz2 S DK

K D ~j@z!. ~26!

The j!z limit of Wz is negligible by comparison with
Eqs.~23! and~24!, and can be disregarded. In thej@z limit,
l,

.

03170
l

re

e

cts

-

he
-

-

k

however,Wz dominates. Hence there is a transition toho-
meotropicanchoring in passing between these limits.

VI. CONCLUSION

In summary, we have argued that in polymer nematics
which the backbones of the molecules are not fully extend
interference of entanglements with director fluctuations g
erates an effective surface anchoring potential, the easy
and strength of which depend on the relative magnitude
the bulk Frank elastic constants.

Our analysis is illustrative in character, the emphasis
ing on making explicit the fundamental contrast with the ro
of director fluctuations at low-molecular-weight nematic su
faces. We are not able to say at present whether the con
is actually experimentally significant. This would require
simultaneous appraisal of both mean-field and fluctuation
fects. Although it is feasible that the mean-field mechanis
which have had some success in describing low-molecu
weight nematic anchoring may also have some relevanc
polymer nematics, experimental data for the latter are c
rently lacking.

We stress that, except for extended side-chain polym
our approach does not apply to fully extended polymers
this sense, we are describing systems which are not in g
eral covered by the well-known argument~see@9#! predicting
planar anchoring on the basis of the high free energy cos
packing chain ends in a homeotropic configuration at
surface.
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