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Fluctuation-entanglement mechanism for director anchoring at nematic polymer surfaces

F. N. Braun and C. Viney
Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
(Received 10 October 2000; published 27 February 001

The existence of polymeric entanglements in a polymer nematic liquid crystal modifies the Frank elastic
description governing director deformation. We present a calculation of the director fluctuation contribution to
polymer nematic surface tension, in which we supplement the usual Frank terms with a damping term due to
entanglements. We infer an effective surface anchoring potential, going to zertm asin the limit of low
entanglement density. The anchoring easy axis depends on the relative magnitudes of the Frank constants
governing director elasticity. We comment on generalizing the approach to take into account polydomain
structure.
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I. INTRODUCTION Il. DIRECTOR FLUCTUATIONS IN POLYMER
NEMATICS
The details of the boundary conditions on the director
at a nematic surface, the so-called “anchoring” conditions,
are of considerable importance in liquid crystal application
[1]. They are often adequately represented by the Rapin
Papoular potential

Consider a main-chain polymer liquid crystal in which the
ersistence lengtR of the chains is much smaller than their
engthL. The isotropic phase conforms to the standard bulk
l|50Iymer scenario, in which each molecule is a spherical coll
and there is a degree of entanglement between the coils.
With the onset of nematic ordering, however, the sphere be-

W(1-|ng-ng?), (1) comes elongatetsee Fig. 1L The entanglements accommo-
date this new equilibrium structure by relaxing and reform-
ing in lower stress configurations. Once mechanical
equilibrium is established, it is clear that any attempt to in-
homogeneously deform the director will be accompanied by
a short-time stress coupling to the entanglements.

describing preferential orientation afs along an “easy
axis” n., according to a positive anchoring strenfth Sev-
eral microscopic approaches exist which giveand W ex-
plicitly within the framework of the Maier-Saupe and On- This is similar to the physical picture presented by

sager theories of nematic orderif®j. These involve mean- \yamer and Terentjef5] in their discussion of the hydro-
field approximation and need to be qualified by their negIeCEtatic coupling between cross-links and Frank elasticity in

of fluctuations éns, which might be important since they ematic elastomers. We now make the ansatz that in polymer
occurin a quasi-two-dimensional space for which m?a”'f'e' ematics, thermal director fluctuatioda(r) over the space

theory |.s.vulnerablé3]. However., for models peytammg FO r of the system take place on time scales shorter than the
the traditional low-molecular-weight thermotropic nematics, .paracteristic reptation times associated with the entangle-
ons fluctuations appear to mamfest_ themsel\{es_ as welly ents, such that we can adopt the hydrostatics of a nematic
behaved corrections to the mean-field predictions, welljagtomer wholesale. That is, we assume that a fluctuation
within the range of validity of simple Ginzburg critefid, 4. jnieracts with an entanglement in the same way as it would

The statistical mechanical procedure for calculating suchyis, 5 permanent cross-link. The fluctuation Hamiltonian
corrections generally involves expanding in a harmonic apyhen includes, in addition to the usual Frank terms, a term
proximation about some “bare” anchoring potential, which

one can identify with the mean-field result. For low- ISOTROPIC Phase
molecular-weight nematics, all fluctuation-induced anchor- RS
ing effects disappear in the limit in which the bare potential .-
goes to zero. In this paper we present a departure from this A ’
state of affairs. We argue that in the general casgobfmer NI
nematics there remains, by contrast, a residual surface an- 1N —
choring potential which is entirely due to fluctuations. I3 >
The effect is engendered by introducing a bulk anchoring
term into the fluctuation Hamiltonian. In the next section we -
discuss how, physically, this term expresses coupling be-
tween director fluctuations and an entanglement matrix. Sec-
tion Il calculates the associated contribution to surface ten-
sion. In Sec. IV, we interpret the anisotropy of the surface
tension according to the Rapini-Papoular scheme. Section V' FIG. 1. Schematic conformation of two entangled molecules in
discusses modifications to the calculation due to the polydothe bulk of a main-chain polymer liquid crystal in the isotropic and
main characteristics of polymer nematics. nematic phases, respectively.
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~ 6n? expressing local anchoring to the entanglement ma- Thel andt modes can be treated separately. We focus on
trix: the | modes, defining for notational convenienggq,z)

=ny(9,2).
. , 5 5 Eachl mode contributes a partition function factor
H= 3| dr{Ky(div én)=+Ky(n-curl én)

+Kz(nXxcurl n)2+ D én?}. 2) Zh.q:J d[#(q,2) Jlexp( —Hp q/kgT), (5)

Note that this choice of Hamiltonian remains phenomenowhere, using Eq(2), the Hamiltonian for the mode is
logically relevant asP/L increases from the limiP<L,
since the polymeric “shape” continues to mold itself around
nematic order in the system and, as stressd®]init is this
basic facility which underpins the term . Clearly, how-
ever, the argument no longer applies beyéndL, when the Equation(5) may be cast in the form
chains are fully extended

h
Hug=3 | 04D+ K0+ G007 ©

In the case of side-chain polymer nematics, it is the back- _

bone order(i.e., the degree of elongation of the sphere Zhﬂ_f d¢odh1Gn( b1, o), @)
rather than the side-chain mesogens, which couples to en-
tanglements. Since the backbone is flexible, we may surmis#ith
that there is always entanglement coupling, independently of o=

1aidi - %
the rigidity of the mesogens. Gy, o) = L(O) , d[¢(z)]exp{ —(2kgT) 1

]

lll. SURFACE TENSION h
XJO dZ[(D+K1q2)¢2+K3(f7z¢)2]]- ®

To derive surface tension frofd, we consider the parti-
tion function for a systerh, consisting of a polymer nematic
confined between two flat parallel surfaceszat0 andz  The kernelG, satisfies
=h in Cartesian coordinatas=(x,y,z),

O & (b= (kBT) P D+K1q2)¢26(¢¢)
G ) =5\ T\ T h( &, o),
zh=f d[on(r)]exp(— Hp /ksT). @ N 2]\ Ks/ag ksT o
The surface tensiog per unit area of the surfaces is the With the initial condition
nonbulk part of the Helmholtz free energy,= —kgT InZ
: Ph=keTinz, Gol 10 = 8 bo). (10

in the limit h—o, i.e.,
The solution forGy, is well known in the context of the

Y= r!irrlth/&A' 4 1p quantum oscillator,
~ Our strategy in the following will be, rather than calculat- Gh( b, do)= Z e—wq(p+1/2)h¢p(¢)¢,*(¢o), (11)
ing Z,, directly, to calculatd|, for arbitraryh, and then take p=0

h—oo. The advantage of this approach is that it allows us to ) )

exploit a mathematically useful analogy with the 1D quan-With eigenfunctions

tum oscillator, pointed out by Ajdagt al.[6] in their calcu-

lation of the pseudo-Casimir interaction between walls _

bounding ordinary nematics. ol )= \/2"_p'
Let us consider first the case of fluctuations about a uni-

form ground state in which the director is everywhere perHere?,, is thepth Hermite polynomial, and we have defined
pendicular () to the surfaces, following closely the analysis

of [6]. We expandan(r)==(dn,(r),ony(r),1) in Fourier D+K,0° . 5
components over surface ardaseparating longitudinall = V", ) Bq=(KgT) "VK3(D+K1q9).

1/4

e P PH (VBeh). (12

s

:

and transverset] modes: (13
1 ~ ~ . Substituting Eq(11) into Eq.(7), and performing the in-
on(r)= 4 % [mi(a,2) +n(q,2)Jexplig-R), tegration, Ajdariet al. obtain
. :8 1— e—quh —12
whereR=(x,y) and the wave vectorg lie parallel to the 7, =4 —) (14)
h,q 4 —wgh '
surfaces. T\ e %
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This gives the total Helmholtz free energy according to 1
Fh: - kBTEq In Zh,q .
kB —2wgh w
Fp= E [hoq+In(1—e™ 29" +In( By/4m)].
s 03]
To obtain the surface tension, we take the derivative with
respect to surface area Only the third term contributes to
theh—oo limit, i.e.,
kgT . . .
= lim 9F /aA——a/aAE In(By/4m),  (16) 2 4 6 8
hoee &qc
where we identify as the surface excess parf pf FIG. 2. The reguced planar anczzhoring potential of Ezp),
WLéqe]=4 In(1+EqQ)/(Ea0)° —4(1+Eqp)
kBT _
2 [In(1—e 2" +In(B4m)]. (17  and an easy axis, which is either planar or perpendicular,
according to the relative magnitudes of the Frank constants
Ky, Ky, andKs.
V. SURFACE ANCHORING By way of illustration, consider the example of

Adding to the above the contribution due to transverse]%;]zager like” anisotropyK; =Kp=K, Ks=K+AK [7].

fluctuations, we calculate in the thermodynamic linAit

— 00
’ keT[IN[£205+1]| keT
Y(L)_E(T — 5. 0c (21
y(L)=kgT(2m) Zf dqf add| . — 5
Kiq™+ and, to lowest order idK=K3;—K,
4D kel 2 ksT [ IN[(£'90)2+1]) keT
— |54 B n dc B
2 L b 42
K2q°+D g y(Ih= 877( o2 5.0 (22

kBT |n(§lqc+ 1) In(fzqc+ 1) kBT 2
~ 167 2 + ~ 5 where¢’ = \(K+AK/2)/D.

&1 52 The difference between the two constituteplanar an-
(18)  choring potential, of strength

where g, is a high-wave number cutoff, and we defigg AK

=K, /D with dimensions of length. W= 7’(”)~ 16 (?)W[ch]' (23
Repeating the analysis for the case of a uniform ground

state in which the director is everywheparallel (||) to the Figure 2 shows the dimensionless quantityéq.] near

surface, we arrive at the strong entanglement limit in whiéhapproaches the cut-

off lengthq_ *

q w2 _—
_ -2 In the weak-entanglement limitD(— 0, £&—«), W goes
y([) =keT(2m) f dqf qdé {0 260 as
D
kgTInéq. [ AK
X _ "B c[ 2N
((Klsin2¢>+Kgcos°-q§)q2+D W_—zwgz (K) (§—). (24)
D kg T

qg_ An interpretation of this expression at the microscopic

level is revealing. We writgj.~d ™%, K~kgT/d, with d an
(19  effective mesogen dimension, and, followingp], D
~nkgT, wheren is the entanglement density. Hencg,?
Equations(18) and(19) establish a basic anchoring poten- =D/K~nd and
tial of the Rapini-Papoular type, with anchoring strength

i (K, sirfg+Kgzcogé)g?+D

W= ()= (L), (20 nkT (e, (25
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which relates the anchoring free energy to the distributionahowever,W, dominates. Hence there is a transitionho-
entropy of entanglements over the mesogen “lattice.” meotropicanchoring in passing between these limits.

V. POLYDOMAIN CORRECTIONS

Experimentally, polymer nematics exhibit a polydomain VI. CONCLUSION

structure. To take this into account, let us assume that there In summary, we have argued that in p0|ymer nematics in

exists a well-defined length scale characterizing domain  \hich the backbones of the molecules are not fully extended,

size. More specifically, we will interpref as a length scale nterference of entanglements with director fluctuations gen-

over which director-director correlations persist. This is to bégrates an effective surface anchoring potential, the easy axis
distinguished from the alternati@] in which ¢ is under- 5 strength of which depend on the relative magnitudes of
stood as an average separation between topological defe¢lss puIk Frank elastic constants.

of sheetlike charactefwhich would also have anchoring Our analysis is illustrative in character, the emphasis be-

properties. . . - \
Two modifications to the surface tension calculation sug—Ing on making explicit the fundamental contrast with the role

t themselvesi) In th mmations over, Eqs.(18) and of director fluctuations at low-molecular-weight nematic sur-
gestthemselve € summations ovey, £gs. a faces. We are not able to say at present whether the contrast
(19, we implement an effective low-wave-number cutoff

ppas] . T B is actually experimentally significant. This would require a
¢ " replacing the thermodynamic limitii) We seth=¢ simultaneous appraisal of both mean-field and fluctuation ef-

in Eq. (16), rath_er thar‘n—>oo,_and absorb into our definition fects. Although it is feasible that the mean-field mechanisms

of surface tension the resulting excess free energy due to th ich have had some success in describing low-molecular-
qygsi-Casimir effect, the second term on the right in the de'ciilveight nematic anchoring may also have some relevance to
nition of Fs, Eq. (1.7).' : . polymer nematics, experimental data for the latter are cur-

With these modifications, the fluctuation part of the sur-rently lacking

fﬁce ft.e_nsmén splits into two parts, "?‘1': Yo~ Ve fW'thh ¢ We stress that, except for extended side-chain polymers,
the finite-domain correction. For the case of the weaky r approach does not apply to fully extended polymers. In

(_)nsager—ll_ke elastic anisotropy invoked abaue., K=K; i sense, we are describing systems which are not in gen-
=Kz, Kz=K+AK), the leading order corrections to the g5 covered by the well-known argumeaee[9]) predicting

planar anchoring potential of E23) are planar anchoring on the basis of the high free energy cost of
keT [AK packing chain ends in a homeotropic configuration at the
=YD=y AL)=— —=|— < surface.
We=7()=7,(L) 4W§§( < ) (£<0)
3kgT [AK
== | (0. (26) ACKNOWLEDGMENTS
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